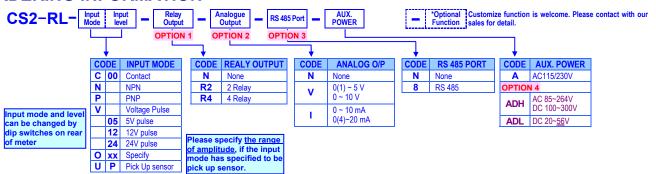
PULSE (FREQ.) Indicator

DESCRIPTION

CS2-RL RPM Indicator has been designed with high accuracy measurement, display and communication of pulse (Frequency). ☑ The innovation feature is auto-range input from 0.01Hz~ 100KHz (option ~140KHz) and the display resolution will auto-change to show the highest according to input frequency.


They are also building in 4 Relay outputs, 3 External Control Inputs, 1 Analogue output and 1 RS485(Modbus RTU Mode) interface with versatile functions such as control, alarm, re-transmission and communication for a wide range of testing and machinery control applications.

■FEATURE

- Measuring Frequency AUTO RANGE 0.01~100KHz / ~140KHz(optional) / Contact, NPN, PNP, Voltage pulse can be switch on rear of meter
- Accuracy: ± 0.005%; Display range: 0~99999; Decimal Point auto moving according to input frequency
- 4 relay can be programmed individual to be a Hi / Lo / Hi Latch / Lo Latch / Go energized with Start Delay / Hysteresis / Energized & De-energized Delay functions, or to be a remote control.
- Analogue output and RS 485 communication port in option
- 3 external control inputs can be programmed individual to be Tare (Relative PV) / PV Hold / Maximum or Minimum Hold / DI (remote monitoring) / Reset for Relay Energized Latch....
- CE Approved & RoHS

■ORDERING INFORMATION

■TECHNICAL SPECIFICATION

Input					
Input Frequency	Input Mode	Input Level			
0.01Hz ~ 50 Hz	Mech. Contact				
0.01Hz ~ 50 Hz 0.01Hz ~ 100KHz 0.01Hz ~ 140KHz (optional)	NPN	High Level: 8~12V; Low Level: 0.0~4.0 V			
	PNP	(with excitation supply 12Vdc)			
	Voltage Pulse	High Level: over 2/3 of input level Low Level: under 1/3 of input level			
	Pick Up Sensor	Specified by order			
Input Mode(NPN, PNP, Contact) & Level(5Vp, 12Vp, 24Vp) changeable by dip switch of rear terminal block.					

Calibration: Doesn't need calibration

Auto range: 0.01Hz ~ 100KHz (~140KHz in option); Input range:

≤± 0.005% of FS± 1C; **Accuracy:** Sampling time: 15 cycles/sec(≥15Hz); f cycles/sec(≤15Hz)

Response time: ≤100 m-sec(when the AvG = "1")

Time out function: Auto, Manual programmable, In manual mode, the period

of time out can be set 0.0 sec~999.9sec

Display & Functions

Numeric: 5 digits, 0.8"(20.0mm)H red high-brightness LED LED:

Relay output indication: 4 square red LED RS 485 communication: 1 square orange LED E.C.I. function indication: 3 square green LED Max/Mini Hold indication: 2 square orange LED RPM / RPS / Linear line speed / Frequency programmable

Display type: 0.0000~99999 with auto moving of decimal point Display range: Resolution of PV: Decimal point will Auto-changed according to input (Auto-Moving for d.p.) Auto / Semi-Auto / Fix; 3 mode programmable

Compensation factor: Compensate error from 0.001~9.999 Over range indication:

Max / Mini recording: Display functions: Front key functions:

Low cut: Digital fine adjust:

ouFL, when input is over 20% of input range Hi

Maxi & Mini Value of PV storage during power on. PV / Max(Mini) Hold / RS 485 programmable Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable

Settable range: -19999~29999 counts **Pu?ro:** Settable range: 0~+99999 PuSPn: Settable range: 0~+99999

Reading Stable Function

Average: Settable range: 1~99 times **Moving average:** Settable range: 1(None)~10 times Digital filter: Settable range: 0(None)/1~99 times

Control Functions(option)

Set-points: Four set-points Control relay: Four relays

> Relay 2 & Relay 3: Dual FORM-C, 5A/230Vac, 10A/115V Relay 1 & Relay 4: Dual FORM-A, 1A/230Vac, 3A/115V Programmable from 0 / 0.0 / 0.00 / 0.000 / 0.0000

D.P. of set point: Relay energized mode: Energized levels compare with set-points:

Hi / Lo / Go.12 / Go.23 / Hi.HLd / Lo.HLd; programmable DO function: Energized by RS485 command of master.

Energizing functions: Start delay / Energized & De-energized delay / Hysteresis / **Energized Latch**

Start band (Minimum level for Energizing): 0~9999counts Start delay time: 0:00.0~9(Minutes):59.9(Second) Energized delay time: 0.00.0~9(Minutes):59.9(Second) De-energized delay time: 0.00.0~9(Minutes):59.9(Second)

Hysteresis: 0~5000 counts

External Control Inputs(ECI)

Input mode: 3 ECI points, Contact or open collect input, Level trigger Functions: Relative PV (Tare) / PV Hold / Reset for Max or Mini. Hold /

DI / Reset for Relay Energized latch

Debouncing time: Settable range 5 ~255 x (8m seconds)

Analogue output(option)

Accuracy: ≤± 0.1% of F.S.; 16 bits DA converter

Ripple: $\leq \pm 0.1\%$ of F.S

Response time: ≤100 m-sec. (10~90% of input)

Isolation: AC 2.0 KV between input and output

Output range: Specify either Voltage or Current output in ordering
Voltage: 0~5V / 0~10V / 1~5V programmable

Current: 0~10mA / 0~20mA / 4~20mA programmable

Output capability: Voltage: 0~10V: ≥ 1000Ω;

Current: 4(0)~20mA: ≤ 600Ω max

Functions: RoH5 (output range high): Settable range: -19999~29999

Ral 5 (output range Low): Settable range: -19999~29999
Ral 5 (output High Limit): 0.00~110.00% of output High

<u>Digital fine adjust:</u> Ro.Pro: Settable range: -38011~+27524

Ro.5Pn: Settable range: -38011~+27524

RS 485 Communication(option)

Protocol: Modbus RTU mode

Baud rate: 1200/2400/4800/9600/19200/38400 programmable

Data bits: 8 bits

Parity: Even, odd or none (with 1 or 2 stop bit) programmable

Address: 1 ~ 255 programmable

Remote display: to show the value from RS485 command of master

Distance:1200MTerminate resistor:150Ω at last unit.

Electrical Safety

 Dielectric strength:
 AC 2.0 KV for 1 min, Between Power / Input / Output / Case

 Insulation resistance:
 ≥100M ohm at 500Vdc, Between Power / Input / Output

 Isolation:
 Between Power / Input / Relay / Analogue / RS485 / E.C.I.

EMC: EN 55011:2002; EN 61326:2003

Safety(LVD): EN 61010-1:2001

Environmental

Operating temp.: 0~60 °C

Operating humidity: 20~95 %RH, Non-condensing

Temp. coefficient:≤100 PPM/°CStorage temp.:-10~70 °C

Enclosure: Front panel: IEC 529 (IP52); Housing: IP20

Mechanical

<u>**Dimensions:**</u> 96mm(W) x 48mm(H) x 120mm(D)

 Panel cutout:
 92mm(W) x 44mm(H)

 Case material:
 ABS fire-resistance (UL 94V-0)

Mounting: Panel flush mounting
Terminal block: Plastic NYLON 66 (UL 94V-0)

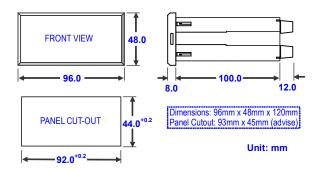
10A 300Vac, M2.6, 1.3~2.0mm²(16~22AWG) 550g / 350g(Aux. Power Code: ADH or ADL)

Power

Weight:

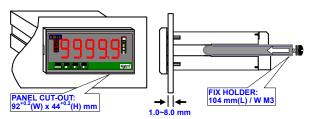
Power supply: AC115/230V,50/60Hz;

Optional: AC 85~264V, DC 100~300V, DC 20~56V

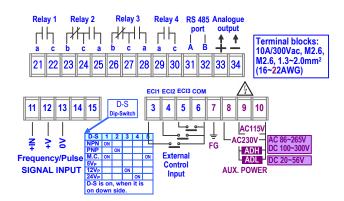

Excitation supply: DC12V/24V, 30mA maximum in standard

Power consumption: 5.0VA maximum **Back up memory:** By EEPROM

■FRONT PANEL

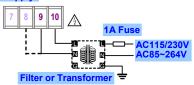


DIMENSIONS

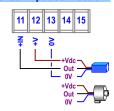


■INSTALLATION

The meter should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation.



■CONNECTION DIAGRAM



Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.

Power Supply


Sensor input connection

Please change the dip-switch on rear of meter to match the input mode and level.

D-S	1	2	3	4	5	
NPN	ON					
PNP		ON				
Mech. Contact	ON				ON	
Voltage pulse 5V _P						
Voltage pulse 12V _P			ON			
Voltage pulse 24V _P				ON		
D-S is on when it is in down site						

RS485 Communication Port

Remote Display by RS485 command - 5485 :

The meter will show the value that received from RS485 sending. In past, The meter normally receive 4~20mA or 0~10V from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master can so that can be save cost and wiring from PLC.

Other functions:

The meter is also support relative PV (\triangle PV) and PV hold functions that set in [EC , GroUP]. Please refer to explain of ECI functions.

■FUNCTION DESCRIPTION

Input Functions

Input range: Auto-Range: 0.01Hz~100.00KHz(option 140KHz),

The meter has been designed very wide input auto-range from 0.01Hz~100.00KHz (Option: 0.01Hz~140.00KHz) that can cover almost any application for RPM, Linear Line Speed and Frequency. User doesn't need to specify the input range.

Auto range display:

programmable between Auto Range / Semi-Auto Range /

manual range, The description as below,

Auto range RULo: The decimal point will be auto changed according to the input frequency so that keep reading in the highest resolution.

Semi-Auto range SEn :

The decimal point will be auto changed according to the input frequency to keep reading in the highest resolution under setting position of decimal point, According to the setting of decimal point. So, it's possible to show "overflow", if the input frequency is over the display range.

Manual range FRoUL: The decimal point will be fixed

Time out of input:

In the case of low frequency, the meter can not to identify that is low frequency and no input until the next pulse input. Sometimes, it takes a long period.

The meter builds in a time out function to cut out the reading to be "0".

There are two modes FAnUL / AULo can be programmed.

Manual FAnUL: There is a period named Lo can be set from 0.0 sec ~ 999.9 sec. The reading will display "0", when the next pulse doesn't input during the setting time.

Auto range RULo:

The reading will display "0", when the next pulse doesn't input during the time that gave by formula of meter's firmware.

Period of time out: Settable: 0.0 sec~999.9sec

If the time out mode [Land] set to be Rout, it's will be show out.

Display & Functions

Max / Mini recording:

The meter wills storage the maximum and minimum value in [user level] during power on in order to review drifting of PV.

PV / Max(Mini) Hold / RS 485 programmable in [d5PL 9]

Display functions: function of [in PUE GroUP]

(Please refer to step A-07) Present Value Pu:

The display will show the value that Relative to Input signal.

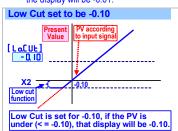
The meter will keep display in maximum(minimum) value during power on, until manual reset by front key in [User level], rear terminal is close [External Control Input(ECI)] or press front down or up key to reset (according to setting, please refer to the function of the ECI Group)

➤ Please find the Sticker that enclosure the package of the meter to stick on the right side of square orange LED

Low cut: Settable range from -19999~+99999 counts.

The users can set the value range.

1. If set the positive value (X1) here to display "0" which it expressed to be low-cut the PV between "+X1 (plus)" & "-X1(minus)" /absolute value

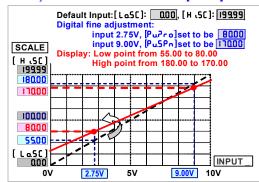

PV< I Setting value (X1) I, the display will be shown 0 EX: Low Cut is set for 0.50. If the display is from -0.50~+0.50, that will be 0.

[LoCUE] Low Cut is set for 0.50, if the PV is from -0.50~+0.50, that display will be 0.

2. If set the negative value (X2) here to display "X2" which it expressed to be low-cut the PV that it's under the X2 setting value;

PV< Setting value(X2), the display will be shown X2.

EX: Low Cut is set for -0.01. If the display is < -0.01, and all the display will be -0.01



Settable range: -19999~+29999

Users can get Fine Adjustment for Zero & Span of PV by front key of the meter, and "Just Key In" the value which user want to show in the current input signals.

Especially, the [PuPro] & [PuSPn] are not only in zero & span of PV, but also any lower point for [Puʔro] & higher point for [PuSPn]. The meter will be linearization for full scale.

The adjustment can be clear in function [P.S.C.L.]

Compensation factor: Settable range: 0.001~9.999

The factor is compensation of display. There are some applications that are indirect detection of sensor as like as Gear, wheel. User can set the factor to compensate the display.

User installs the proximity switch to detect the RPM of left wheel, and want to show the right wheel. It's easy to set the factor to do it. Frequency: 50Hz; Left wheel: diameter: 1M; Right wheel: diameter: 0.35M

00000000

Set:

Pulse/Rotation PPr to be 1 1 Pulse/Rotation

The meter will show 1480RPM of left wheel.

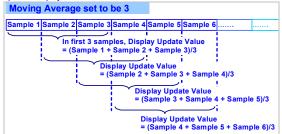
Set: FREEr to be 2.857(1M/0.35M), then the meter will show 4228.5RPM for

Reading Stable Function

Average display:

Jittery Display caused by the noise or unstable signal. User can set the times to average the readings, and to get smoothly display.

The meter's sampling is 15cycle/sec. If the [RuC](Average) set to be to express the display update with 5 times/sec. The meter will calculate the sampling 1-3 and update the display value. At meantime, the sampling 4-6 will be processed to calculate


Remark: The higher average setting will cause the response time of Relay and Analogue output slower.

Moving average:

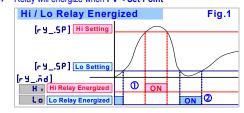
Jittery Display caused by the reasons as like as noise or unstable signal. User can set the times to average the readings, and get smoothly display.

The meter's sampling is 15cycle/sec. If the [ลิตินน์] (Moving Average) set to be expressed the display update with 15 times/sec.,

In the first updated display value will be same as average function. In the next updated display value, the function will get the new fourth sample (sample 4) then throw away the first sample (sample 1) that the newest 3 samples(sample 2,3,4) will be calculated for the updated display value.

Remark: The higher moving average setting wouldn't cause the response time of Relay and Analogue output slower after first 3 samples.

The digital filter can reduce the magnetic noise in field.


The digital filter can reduce the influence of spark noise caused by magnetic of coil.

If the values of samples are over digital filter band (fix in firmware and about 5% of stable reading) 3 times (Digital Filter set to be 3) continuously, the meter will admit the samples and update the new reading. Otherwise, it will be as treat as a noise and skip the samples.

Control Functions(option)

Relay energized mode: Hi / Lo / Go-1.2 / Go-2.3 / Hi.HLd / Lo.HLd / DO programmable

Hi H (Fig.1-0): Relay will energize when PV > Set-Point Lo [Fig.1-2): Relay will energize when PV < Set-Point

Go-1.2 <u>5o− l2</u>:

Go-2.3 Go-2.3

This function is programmable in Relay 4 only.

If the Relay 4 set to be Go function, the relay will compare with [r y LSP] and [r y 2.5P].

Go relay energized when the condition is

[rY (SP] (Hi) > PV > [rY2.5P] (Lo)

This function is programmable in Relay 4 only.

If the Relay 4 set to be Go function, the relay will compare with [r 92.5P] and [r 93.5P].

Go relay energized when the condition is

[r 42.5P] (Hi) > PV > [r 43.5P] (Lo)

Hi.HLd H .HLd (Lo.HLd Lo.HLd):

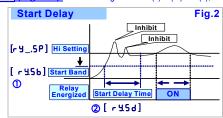
The relay energized with latched function is for electrical safety and human protection

For example, a current meter relay installed for the over current alarm of motor. Generally, over current of motor caused by over load, mechanical dead lock, aging of insulation

Above cases will alarm in the meter, if the user doesn't figure out the real reason and re-start the motor. It may damage the motor. The functions of Hi.HLd & Lo.HLd are designed must be manual reset the alarm after checking out and solving the issue. It's very important idea for electrical safety and human

As the PV Higher (or lower) than set-point, the relay will be energized to latch except manual reset by from key in [user level] or [EC .](ECI) set to be F4.5L is closed.

DO function The function has been designed not only a meter but also an I/O interface. In the case of motor control cabinet can't get the remote function. It's very easily to get the ON/OFF status of switch from CS2 series with RS485 function.

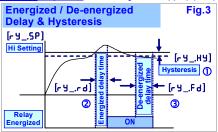

If the [r Y_.nd] had been set do, the relay will be energized by RS485 command directly, but no longer to compare with set-point.

Start delay band and Start delay time:

The functions have Been designed for,

- ► To avoid starting current of inductive motor (6 times of rated current)
- LaHLd (Lo & latch). As the meter is power on and no input to display the "0" caused the relay will be energized. User can set a band and delay time to inhibit the energized of relay.

Start band r45b (Fig.2-0): Settable range from 0~9999 Counts Start delay time [r45d] (Fig.2-@): Settable range from 0.0(s)~9(m)59.9(s);


Hysteresis FY_HY (Fig.3-①): Settable range from 0~9999 Counts

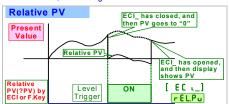
As the display value is swing near by the set point to cause the relay on and off frequently. The function is to avoid the relay on and off frequently such as compressor.....etc.,

Relay energized delay Fy_rd (Fig.3-②): Settable range from 0.0(s)~9(m)59.9(s);

The function is to avoid the miss action caused by noise. Sometime, the display value will swing caused by spark of contactor...etc.. User can set a period to delay the relay energized.

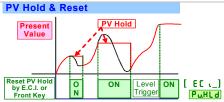
Relay de-energized delay - Y_,Fd (Fig.3-3): Settable range from 0.0(s)~9(m)59.9(s);

External Control Inputs(ECI)


The three external control inputs are individually programmable to perform specific meter control or display functions. All E.C.I. have been designed in level trigger actions. Please pay attention, the ECI1 or ECI2 input will be disable while UP or Down Key has been set to be "YES".

Functions:

Relative PV / PV Hold / Reset Max or Mini. Hold / DI / Reset for Relay Energized latch programmable.


Relative PV FEL.Pu or Tare:

The [EC _] can be set to be FEL.Pu function. When the E.C.I. is closed, the reading will show the differential value.

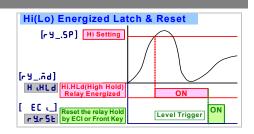
PV Hold PuHLd:

The [EC] can be set to be PuHLd (PV Hold) function.

Reset for Maximum or Minimum Hold 1-5-

When the [dSPLY] function in [inPUL GroUP] selected กิสิริHd or การ์ เกษส , the display will show Maximum or

The [EC] function can be set to be nr5E function to reset the maximum and minimum value in [User Level] by terminals of ECI (close). Please refer to the figure as below.



DI d:

The E.C.I can be set to be d i function, when the meter building in RS485 port. It is easier to get remote monitoring a switch status through the meter as like as DI of PLC.

Reset for Relay Energized Latch - 4-51:

If the relay energized mode has been set to be H .HLd (Energized latch), and the [EC ._] can be set to be rurst (Reset the Relay energized latch). When the PV meets the condition of relay energizing, the relay will be energized and latch until the ECI is to be closed.

Debouncing time:

The function is for avoiding noise signal to into the meter. And The basic period is 8mseconds. It means you set the number that has to multiple 8 m-seconds.

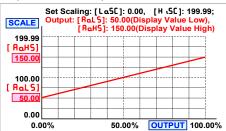
For example:

[dEbn[]set to be 5, it means 5 x 8mseconds = 40mseconds

Analogue output(option)

Please specify the output type either a 0~10V or 4(0) ~ 20mA in ordering. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point positions.

Output range: Voltage: 0~5V / 0~10V / 1~5V programmable Current: 0~10mA / 0~20mA / 4~20mA programmable


Output High / Low scale, output limit, fine adjustment **Functions:**

Output range high [RoH5]:

To setting the Display value High to versus output range High(as like as 20mA in 4~20)

Output range low [AoL 5]:

To setting the Display value Low to versus output range Low(as like as 4mA in 4~20)

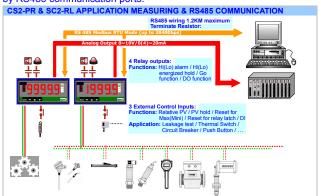
The range between [RaH5] and [RaL5] should be over 20% of span at least; otherwise, it will be got less resolution of analogue output.

Output High Limit [RoL nt]:

0.00~110.00% of output High User can set the high limit of output to avoid a damage of receiver or protection system.

Fine zero & span adjustment:

Users can get Fine Adjustment of analogue output by front key of the meter. Please connect standard meter to the terminal of analogue output. To press the front key (up or down key) of meter to adjust and check the output.


Zero adjust [Ro?ro]: Fine Zero Adjustment for Analog Output; Settable range: -38011~27524;

Span adjust [RoSPn]: Fine Span Adjustment for Analog Output;

Settable range: -38011~27524;

RS 485 communication(option)

CS2 series supports Modbus RTU mode protocol to be used as Remote Terminal Unit (RTU) for monitoring and controlling in a SCADA (Supervisor Control And Data Acquisition) system. The baud rate can be up to 38400 bps. It's not only can be read the measured value and DI (external control inputs) status but also controls the relays output (DO) by RS485 communication ports.

Remote Display:

The meter will show the value that received from RS485 command. In past, The meter normally receive 4~20mA or 0~10V from AO or digital output from BCD module of PLC .We support a new solution that PV shows the value from RS485 command of master so that can be **save cost and wiring** from PLC.

When the [d5PLY] set to be RS485, it means, the PV screen will show the number from RS485 command & data. The data(number) will be same as PV that will compare with set-point, analogue output and ECI functions so that is to control analogue output, relay energized and so on.

Calibration

System calibration by front key. The process of calibration, please refer to the operating manual

Optional Function

Customize function with quantities is welcome. Please contact with our sales for detail. The appendix code of optional function will be added behind the code of auxiliary power as like as xxx-A-HSM(High speed mode.

■ ERROR MESSAGE

BEFORE POWER ON, PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN.						
SELF-DIAGNOSIS AND ERROR CODE:						
DISPLAY	DESCRIPTION	REMARK				
ouFL	Display is positive-overflow (Signal is over display range)	(Please check the input signal)				
-oufl	Display is negative-overflow (Signal is under display range)	(Please check the input signal)				
ouFL	ADC is positive-overflow (Signal is higher than input range high 20%)	(Please check the input signal)				
-ouFL	ADC is negative-overflow (Signal is lower than input range low -20%)	(Please check the input signal)				
EEP 🚔 FR iL	EEPROM occurs error	(Please send back to manufactory for repaired)				
A iCinG 🚔 Pu	Calibrating Input Signal do not process	(Please process Calibrating Input Signal)				
R ₁C ⇒ FR ₁L	Calibrating Input Signal error	(Please check Calibrating Input Signal)				
RoC.nG 🚔 Pu	Calibrating Output Signal do not process	(Please process Calibrating Output Signal)				
RoC ⇒ FR iL	Calibrating Output Signal error	(Please check Calibrating Output Signal)				

■ FRONT PANEL:

Numeric Screens

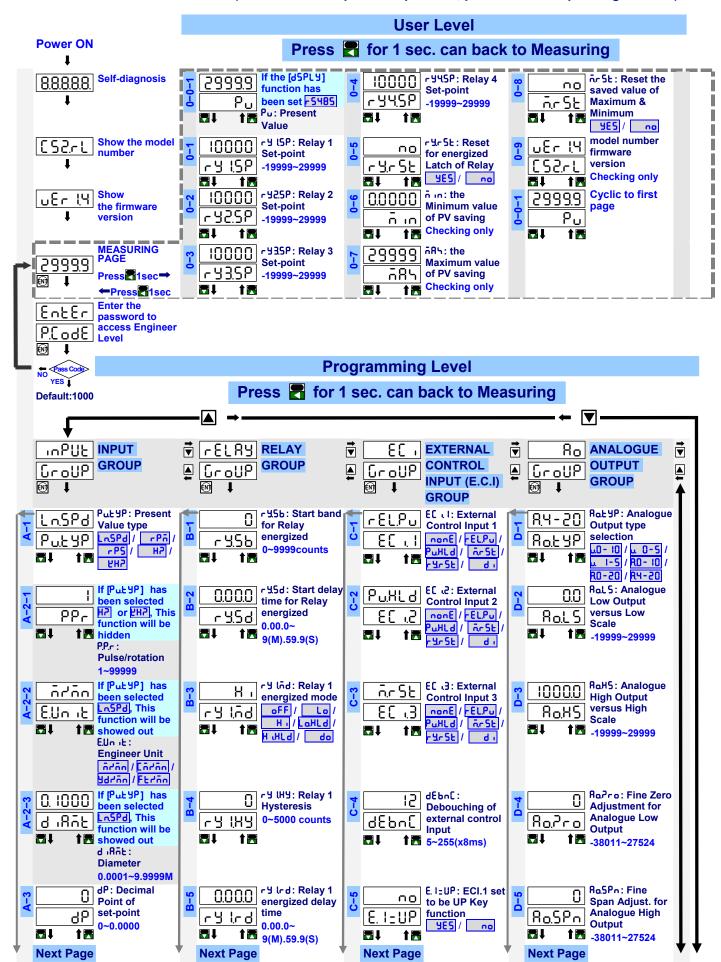
0.8"(20.0mm) red high-brightness LED for 4 2/3 digital present value.

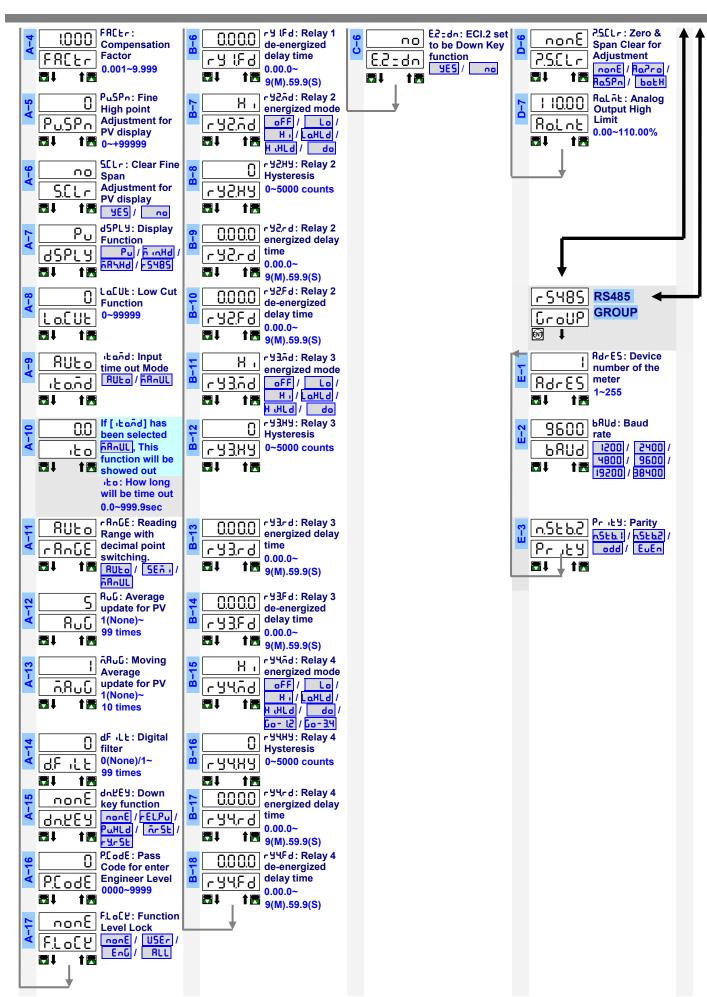
- I/O Status Indication
- Relay Energized: 4 square red LED
 - **RL1** display when Relay 1 energized;
 - **RL2** display when Relay 2 energized;
 - display when Relay 3 energized;
 - RI4 display when Relay 4 energized;
- External Control Input Energized: 3 square green LED
 - display when E.C.I. 1 close(dry contact)
 - display when E.C.I. 2 close(dry contact)
 - display when E.C.I. 3 close(dry contact)
- RS485 Communication: 1 square orange LED
 - will flash when the meter is receive or send data, and quickly means the data transient quicker.
- Max/Mini Hold indication: 2 square orange LEDs
 - displayed: When the display function has been selected in Maximum or Minimum Hold function.
- Stickers:

Each meter has a sticker what are functions and engineer label enclosure.

- Relay energized mode: HH HI LO LL DO
- E.C.I. functions mode:
 - PV.H PV.H(PV Hold) / Tare Tare / DI DI(Digital Input)
 - M.RS M.RS(Maximum or Minimum Reset) /
 - R.RS (Reset for Relay Latch)
- Engineer Label: over 80 types.

Operating Key: 4 keys for Enter(Function) / Shift(Escape) /


	Setting Status	Function Index
Up key	Increase number	Go back to previous function index
Down key	Decrease number	Go to next function index
Shift key	Shift the setting position	Go back to this function index, and abort the setting
Enter/Fun key	Setting Confirmed and save to EEProm	From the function index to get into setting status


Pass Word P.CodE: Settable range: 0000~9999;

User has to key in the right pass word so that get into [Programming Level] . Otherwise, the meter will go back to measuring page. If user forgets the password, please contact with the service window.

- Function Lock: There are 4 levels programmable.
- None nonE: no lock all.
- <u>User Level</u> <u>USEr</u>: User Level lock. User can get into
 User Level for checking but setting.
- Programming Level EnG: Programming level lock.
 User can get into programming level for checking but setting.
- ALL RLL: All lock. User can get into all level for checking but setting.
- Front Key Function
- - ▶ If the front key function has been set, the terminal input for ECI will be disabling.

■ OPERATING DIAGRAM (The detail description of operation, please refer to operating manual.)

▶ Plesae refer to operating manual for detail description