

CPM-52/51

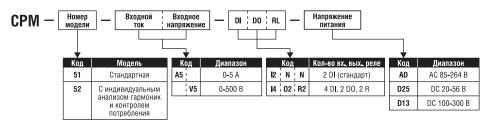
МНОГОФУНКЦИОНАЛЬНЫЙ АНАЛИЗАТОР КАЧЕСТВА ЭНЕРГОСНАБЖЕНИЯ

■ ОПИСАНИЕ

Многофункциональный измеритель серии CPM осуществляет высокоточное измерение, индикацию и передачу по информационной сети (Modbus RTU) всех электрических и мощностных параметров, а также производит вычисление характеристик качества электроэнергии.

Прибор осуществляет измерение амплитудных значений основных и высших гармоник тока и напряжения (до 31 гармоники), производит расчет суммарного коэффициента гармоник (Total Harmonic distortion).

Мультиметр серии СРМ способен работать в силовых сетях со значительными гармоническими искажениями напряжения и тока без снижения точности измерений.


Анализатор оснащен дискретными входами, выходами и последовательным интерфейсом, позволяющими осуществлять широкий спектр функций: дистанционное управление, сигнализацию, формирование аварийных сигналов, сбор статистики и запись информации.

■ ПРИМЕНЕНИЕ

Измерение электросиловых параметров. Управление энергопотреблением. Пульты управления и силовые панели. Мониторинг двигателей и генераторов. Коммутационная, распределительная аппаратура. Анализ качества энергоснабжения.

■ КОД ЗАКАЗА

■ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

араме	гры	CPM-51	CPM-52	
Измерение Мощности	Напряжение	V ₁₂ V ₂₃ V ₃₁ V _{LL_Avg} V ₁ V ₂ V ₃ V _{LN_Avg}	•	•
	Ток	I ₁ I ₂ I ₃ I _{Avg} I _N	•	•
	Активная Мощность	P_1 P_2 P_3 ΣP	•	•
	Реактивная Мощность	$Q_1 Q_2 Q_3 \Sigma Q$	•	•
	Полная Мощность	$S_1 S_2 S_3 \Sigma S$	•	•
	Коэффициент Мощности	PF ₁ PF ₂ PF ₃ PF _{Avg}	•	•
	Частота	Hz	•	•
	Активная Энергия	WH _{Imp} WH _{Exp} WH _{Total} WH _{Net}	•	•
	Реактивная Энергия	QH _{Imp} QH _{Exp} QH _{Total} QH _{Net}	•	•
	По запросу	$P_{md} Q_{md} S_{md}$	•	•
	Дисбаланс	V_unbl I_unbl	•	•
Качество Э/П	THD для Напряжения	THD _{V12} THD _{V23} THD _{V31} THD _{V_Avg}		•
	THD для Тока	THD _{I1} THD _{I2} THD _{I3} THD _{I_Avg}		•
	Индивидуальные Гармоники	2 nd ~31 st		•
	Крест Фактор для Напряжения	Крест Фактор		•
	Крест Фактор для Тока	К Фактор		•
	Регистрация Мак/Мин	Регистрация времени Максимума/Минимума по всем параметрам		•
0/1	Дискретные Входа	DI ₁ DI ₂ *DI ₃ *DI ₄	•	•
	Дискретные Выхода	*DO ₁ *DO ₂	•	•
	Релейные выхода	*RO ₁ *RO ₂	•	•
	RS485	Modbus RTU mode	•	•
	Реальное время	Год, Месяц, День, Час, Минута, Секунда	•	•
	* дополнительно указываются пр	и заказе		•

Точность и разрешение

Параметры	Точность	Разрешение	Измеряемый диапазон	
Напряжение	0.2%	0.1%	40-290 В (фазное)	
Ток	0.2%	0.02%	1-120% от заданного	
Ток в нейтрали	1.0%	0.1%	1-120% от заданного	
Активная мощность	0.5%	0.1%	0-9999 МВт	
Реактивная мощность	0.5%	0.1%	0-9999 кВАРч	
Полная мощность	0.5%	0.1%	0-9999 MBA	
Коэффициент мощности	0.5%	0.1%	±0.02-1.00	
Частота	0.2%	0.01 Гц	45-65 Гц	
Активная энергия	0.5%	0.1 кВтч	0-99999999.9 кВтч	
Реактивная энергия	0.5%	0.1 кВАРч	0-999999999 кВАРч	
Суммарный коэффициент гармоник ТНD	1.0%	0.01%	0-100%	
COSj (коэффициент относи- тельной мощности гармоники)	1.0%	0.01%	0-100%	
Дисбаланс	0.5%	0.1%	0-300%	

Вид измерения

Измерение истинного среднеквадратичного значения (True rms).

Выборка

128 точек/цикл.

Использование

- Работа в одно-, двух-, трехфазных сетях с нейтралью и без, и в трехфазных сбалансированных сетях только через один трансформатор тока.
- Возможность подключения к трехфазной сети только через два трансформатора тока.
- Для входного напряжения свыше 500V возможно использование трансформатора напряжения.

Измеряемые параметры

Напряжение

Фазное, линейное (в т.ч. минимальное, максимальное, среднее).

Tok

В каждой фазе, средний, ток нейтрали (в т.ч. минимальный, максимальный).

Мошность

Активная, реактивная, полная (индивидуально по фазам, общая).

Коэффициент мощности

Индивидуально по фазам, средний.

СОЅф (коэффициент относительной мощности гармоники)

До 31 гармоники, включительно.

Гармонические искажения

Амплитудные значения основных и высших гармоник тока и напряжения (до 31 гармоники, включительно).

Частота

45-65 Hz

Количество электроэнергии вырабатываемой или потребляемой

Активной, реактивной, полной.

Дисбаланс

Напряжения, тока.

Расчет параметров качества энергоснабжения

Суммарный коэффициент гармоник для напряжения и тока, К-фактор для тока, Крест-фактор для напряжения.

Последовательный порт

RS485 с протоколом связи Modbus RTU.

Часы реального времени

Год, месяц, день, час, минута, секунда.

Настройка входного диапазона

Программируемый коэффициент передачи для измерительных трансформаторов напряжения и тока.

Запись МИН, МАКС значений

Все измеряемые параметры.

Функции дискретных входов

Дистанционное управление.

Функции дискретных выходов

- а) формирование сигналов при достижении предустановленных границ диапазона измеряемого параметра;
- б) программируемый импульсный информационный сигнал.

Прикладное программное обеспечение

- а) для дистанционного управления и контроля;
- б) для сбора статистики, анализа и регистрации данных.

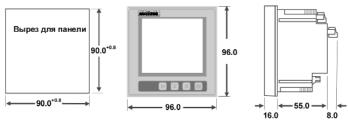
Диапазон рабочих температур

От -10 до +70° С.

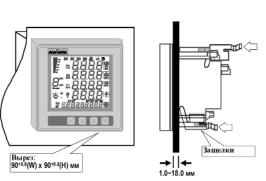
Степень защиты

IP54 – передняя панель;

IP20 – корпус.


Изоляция

Вход/выход/питание/корпус.


Сертификация и соответствие

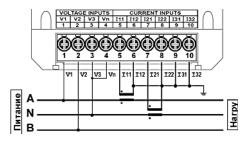
EN55011:2002, EN61326:2003, EN61010-1:2001.

■ ГАБАРИТНЫЕ РАЗМЕРЫ

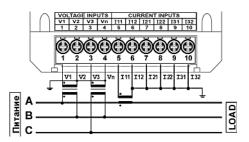
Размеры: мм

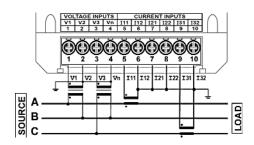
■ СХЕМА ПОДКЛЮЧЕНИЯ

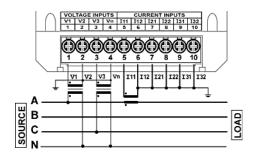
Подключение питания (Клеммник 2)

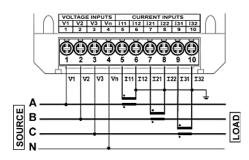

Подключение Напряжения и Тока (Клеммник 1)

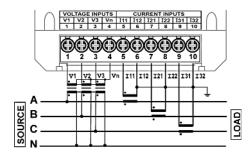
Сечение провода для Напряжения: AWG16~12(1.3~2.0мм²) Сечение провода для Тока: AWG15~10(1.5~2.5мм²)


• 1 Фаза 2 линии - [Уставки 3LN, 3CT]

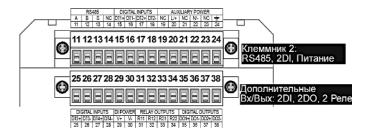

• 1 Фаза 3 линии - [Уставка 3LN, 3CT]

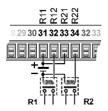

• 3 Фазы 3 линии (Сбаланс.) с 2РТ/1СТ [Уставка: 2LL, 1СТ]


• 3 Фазы 3 линии с 2PT/2CT[Уставка: 2LL, 2CT]

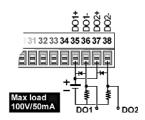

• 3 Фазы 4 линии (Сбаланс.) с 2РТ/1СТ [Уставка: 2LN, 1СТ]

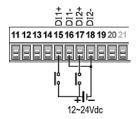
• 3 Фазы 4 линии 3СТ[Уставка: 3LN, 3СТ]

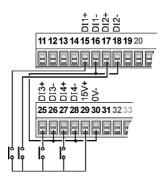

• 3 Фазы 4 Линии с 3РТ/3СТ[Уставка: 3LN, 3СТ]

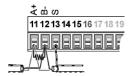


RS485 / 2DI (Клеммник 2) и Дополнительно 2DI / 2DO / 2 реле


Сечение провода: AWG22~16(0.5~1.3мм²)


• 2 реле(Дополнительно) с Внешним питанием


• 2DO(Дополнительно) с Внешним питанием


• 2DI с Внешним питанием DC

• 4DI(Дополнительно) с Внутренним питанием DC

• Подключение RS485

Мах. Расстояние: 1200М Нагрузочное сопротивление (на послед 120∼300ohm/0.25W(Обычно: 150ohm)